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a  b  s  t  r  a  c  t

While  the  mortality  impacts  of  urban  air pollution  have  been  well
addressed  in  the  literature,  very  little  is known  about  the mortality
impacts  and  associated  social  cost  from  wildfire-smoke  exposure
(Kochi  et  al.,  2010;  U.S.  Environmental  Protection  Agency,  2004).  In
an  attempt  to address  this  knowledge  gap, we  estimate  the  social
cost  associated  with  excess  mortality  due  to  smoke  exposure  during
the  2003  southern  California  wildfires.  Accounting  for confounding
factors  such  as seasonality  and  fluctuation  of  daily  mortality  lev-
els,  we  identify  133  excess  cardiorespiratory-related  deaths  caused
by  wildfire-smoke  exposure.  The  mean  estimated  total  mortality-
related  cost  associated  with  the  2003  southern  California  wildfire
event  is  approximately  one  billion  U.S.  dollars.  Accounting  for mor-
tality  costs  associated  with  wildfire-smoke  exposure  allows  for a
better  understanding  of  the tradeoffs  associated  with  fuel  treat-
ment  programs  and  suppression  costs.

Published by Elsevier GmbH on behalf of Department of
 Forest Economics, SLU Umeå , Sweden.

Introduction

Large wildfire events in the United States and around the world have raised concerns about
the potential adverse health impacts of exposure to wildfire smoke. However, incorporating the
costs associated with health effects, especially mortality effects, of smoke into wildfire-management
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decisions has been hampered by a dearth of quantitative information (Kochi et al., 2010). There
have been a few studies that examined the mortality effect of wildfire-smoke exposure. Most
of these studies analyzed the 1997 Asian haze event that affected large areas in Southeast Asia
between September and November 1997. A mortality effect was observed in areas that experienced
extremely high air-pollution levels. For example, Sastry (2002) found a significant mortality effect
among the elderly (over 65 years old) following high air pollution days (coarse particulate mat-
ter (PM10) over 210 �g/m3) in Malaysia, where the daily average PM10 levels reached as much as
423 �g/m3 and low visibility lasted for 33 days in some areas.1 Jayachandran (2009) also found a
substantial mortality effect from wildfire-smoke exposure among the young (fetuses, infants and
children under three years old) in Indonesia, where the hardest hit area recorded daily average
PM10 levels of 1000 �g/m3 over several days. The author estimated that wildfire-smoke exposure
contributed to over 15,600 premature deaths. Frankenberg et al. (2005) found a significant nega-
tive impact on the ability to carry a heavy load, a predictor of later mortality, among people who
were exposed to the wildfire smoke in Indonesia. No significant mortality effect was  found in areas
less affected by wildfire smoke such as Singapore (Emmanuel, 2000) and Thailand (Phonboon et al.,
1999).

Although these studies are informative, the 1997 Asian Haze was  much larger in scale and longer
in duration than the most wildfires in the United States. The exposed population is also quite dif-
ferent from the U.S. population. To our knowledge, there is only one previous study that examined
the mortality effect of wildfire-smoke exposure in the United States. Vedal and Dutton (2006) exam-
ined mortality levels during the 2002 Hayman fire in Colorado. During the Hayman fire, higher than
usual air-pollution levels were observed in the Denver metropolitan area for two separate days.2

The authors did not find a significant increase in mortality levels during or following the Hay-
man fire. This result may  be because the increase in air pollution was  relatively modest and short
lived.

The information gap in the current wildfire literature is problematic for several reasons. First, mor-
tality impacts are often the dominant social cost associated with air pollution (U.S. Environmental
Protection Agency, 1999, 2005). Second, catastrophic wildfire events are expected to increase in
coming years due to climate change. Finally, information on the mortality costs of wildfire-smoke
exposure is needed to help managers understand the benefits of wildfire management actions such
as suppression and fuel treatment.

We address this gap in the literature by estimating the mortality cost associated with one of
the largest near-urban wildfire events in U.S. history, the 2003 southern California wildfires, which
included 14 wildfires that occurred almost simultaneously in late October 2003 (Table 1). The first fire
started on October 21st and the last fire was contained on November 4th. The wildfires burned 750,000
acres. Intense smoke from the wildfires affected urban areas in Los Angeles, San Diego, Riverside,
Orange and San Bernardino Counties between October 24th and 30th. To estimate the mortality-
related cost of smoke exposure from this wildfire event, we  first quantify the number of excess deaths
associated with wildfire-smoke exposure, then we multiply it by the per unit social cost of premature
mortality to obtain the total cost.

In the next section, we describe the analytical methods and data used to quantify the num-
ber of excess deaths due to wildfire-smoke exposure. Next, we  describe our results. In the third
section, we estimate the mortality cost. In the last section, we  discuss the conclusions and policy
implications.

1 Particulate matter (PM) is one of the main air pollutants contained in wildfire smoke and the level of PM is often used as a
proxy  for the intensity of wildfire-smoke exposure (Kochi et al., 2010). Particulate matter (PM) is categorised as PM10, which is
particles less than 10 �m in diameter, and PM2.5, which is particles less than 2.5 �m in diameter.

2 The high daily average PM2.5 levels observed during the Hayman fire were 44 �g/m3 and 48 �g/m3 on June 9th and
June 18th, respectively (Vedal and Dutton, 2006). The national daily average PM2.5 standard is “the 3-year average of the
98th percentile of 24-hour concentrations at each population-oriented monitor within an area must not exceed 35 �g/m3”
(http://www.epa.gov/air/particlepollution/standards.html:  last accessed on July 15, 2011).

http://www.epa.gov/air/particlepollution/standards.html
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Table 1
2003 southern California wildfires.

Name County Date fire
started

Date fire
contained

Acres
burned

Property damage Estimated
suppression
cost

1 Roblar 2 San Diego 10/21 11/4 8592 5,400,000
2  Pass Riverside 10/21 10/23 2387 5 residences

destroyed
1,729,417

3,  4 Grand
Prix/Padua

San
Bernardino

10/21 11/4 80,340 194 residences,
1 commercial, and
60 other structures
destroyed.

12,800,000

5  Piru Ventura 10/23 11/4 63,991 1 residence,
1 commercial and
6  other structures
destroyed.

7,700,000

6 Verdale LA/Ventura 10/24 10/28 8650 1 other structure
destroyed

2,407,000

7  Happy Santa
Barbara

10/24 10/26 250

8  Old San
Bernardino

10/25 11/4 91,281 940 residence and
30 commercial
structures
destroyed

37,650,000

9  Cedar San Diego 10/25 11/4 273,246 2232 residences,
22 commercial and
566 other
structures
destroyed

29,880,826

10 Simi Ventura/LA 10/25 11/4 108,204 37 residences, 278
other structures
destroyed

10,000,000

11  Paradaise San Diego 10/26 11/4 56,700 221 residences, 2
commercial, and
192 other
structures
destroyed

13,000,000

12  Mountain Riverside 10/26 11/2 10,331 21 residences and
40 other structures
destroyed.

2,230,000

13  Otay San Diego 10/26 10/28 45,971 1 residence, 5 other
structures
destroyed

350,000

14  Wellman Riverside 10/26 10/27 100 100,000

Total 750,043 4856 structures
destroyed

123,247,243

Source: Appendix 2 in California Fire Siege 2003: The Story, prepared by US Forest Service Pacific Southwest Region and California
Department of Forestry and Fire Protection.

Quantifying the mortality impact

Analytical methods

There are two possible approaches to quantifying excess mortality from a wildfire event. One is the
historical-control method and the other is a regression-model approach. The historical-control method
estimates the aggregate impact of an event by comparing total or average mortality levels during
a study period (wildfire period) and a reference period (non-wildfire period). With the historical-
control method, potential confounding factors are controlled for through selection of appropriate
reference periods. Potential confounding factors addressed in the air pollution-mortality literature
include seasonality and extreme weather conditions (U.S. Environmental Protection Agency, 2004).
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The regression-model approach, usually employed in a time-series analysis framework, allows for
estimation of the marginal mortality effect of air pollution associated with wildfire smoke or the
wildfire event itself. Confounding variables are included as explanatory variables in the regression
model.

The choice of the most appropriate analytical method largely depends on the available data and
purpose of the analysis. In this study, we implement a hybrid-approach. We  take a regression approach,
but we control for confounding factors through selection of appropriate reference periods. We  use a
difference-in-difference (DID) model to estimate the mortality effects of the 2003 southern California
wildfire event using mortality data from the wildfire period (study period) and non-wildfire period
(reference period) from 2003, as well as the same periods from control years of 1999–20023,4:

death = ˇ0 + ˇ1 yr2003 + ˇ2 study + ˇ3 yr2003 × study+ � (1)

where death is the number of daily deaths from cardiorespiratory-related causes, yr2003 is a dummy
variable which equals one if the observation is from 2003, and 0 otherwise, study is a dummy variable
which equals one if the date of death falls during the wildfire period, and 0 otherwise, yr2003 × study is
an interaction term between variables yr2003 and study and � is an i.i.d. error term. The parameter ˇ3
captures the effect of the wildfire event in 2003 after controlling for the baseline change in mortality
risk between the reference and study periods.

To control for seasonal-related confounding factors such as weather conditions, we used a reference
period immediately before the wildfire event started. The 2-week reference and study periods were
chosen because daily mortality levels between October and November 2003 exhibited a two- to four-
day cycle of high mortality (high phase) followed by two to four days of lower mortality (low phase)
(see Appendix A). We  suspect this is a random fluctuation, but if the wildfire period coincided with the
high phase, while the reference period coincided with the low phase, we could mistakenly estimate
a positive mortality effect. Since 2-week average mortality levels fluctuate much less, we  hope to
minimize bias due to the cyclical pattern of mortality levels using 2-week reference and study periods.
Specifically, we define October 6–19 as the reference period and October 24–November 6 as the study
period.

Previous wildfire-health studies have found that there may  be a lagged health effect from smoke
exposure. For example, Delfino et al. (2009) examined the morbidity effect of the 2003 southern Cal-
ifornia wildfires and found that cardiorespiratory-related hospital admissions increased significantly
between October 31 and November 15. To capture this effect, we designated a 2 week post-wildfire
period 1 (November 7–20), and estimated the following model:

death = ı0 + ı1 yr2003 + ı2 post1 + ı3 yr2003 × post1 + � (2)

where post1 is a dummy  variable that equals one if the death occurred in the post-wildfire period 1,
and 0 otherwise. This model was estimated using data from the reference period and post-wildfire
period 1 between 1999 through 2003.

Analyzing post-fire mortality also allows us to test for the presence of a harvesting effect, which
is a short-term temporal displacement of death (Deschenes and Moretti, 2007). The harvesting effect
does not change total mortality; it only shifts the timing of death forward. For example, wildfire-smoke
exposure may  shorten the lives of people with very frail health. If this is the case, we would expect to
see a decline in mortality levels after the sharp increase. Since the sharp increase of mortality levels
may  appear during the post-wildfire period 1, it is relevant to study the level of mortality after the
post-wildfire period 1. We  selected one week following the post-wildfire period 1 as the post-wildfire
period 2 (November 21–27), and estimated the following model:

death =  0 +  1 yr2003 +  2 post2 +  3 yr2003 × post2 + � (3)

3 We chose 1999–2002 as control years because there were not any large wildfires linked with diminished air quality during
those years for the reference, study and post-wildfire periods (http://cdfdata.fire.ca.gov/incidents/incidents statsevents).

4 As described later, this model is estimated separately for each study area.

http://cdfdata.fire.ca.gov/incidents/incidents_statsevents
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where post2 is a dummy  variable that equals one if a death occurred in post-wildfire period 2, and
0 otherwise. This model was also estimated with data from the reference period and post-wildfire
period 2 between 1999 through 2003.

Since the daily number of deaths is a small nonnegative number, we used a Poisson regression
model to estimate Eqs. (1)–(3).  However, the Poisson regression model has the restrictive assumption
that the variance equals the mean. When this assumption was  violated, we  estimated a negative
binominal regression model that has more flexible distributional assumptions.

Data

We combined data from two sources. Daily mortality data were obtained from the California
Department of Health Services, Center for Health Statistics (date of death, zipcode of deceased, cause
of death, and age of deceased).5 Air pollution data were collected from the California Environmental
Protection Agency Air Resources Board and the United States Environmental Protection Agency (U.S.
EPA).

We created a daily count of deaths by cause at the zip-code level then we  took two approaches
to defining the geographic areas likely impacted by smoke. First, we  used satellite imagery to create
what we call “smoke-affected areas.” Smoke-affected areas are the areas within Los Angeles, Orange,
Riverside, San Bernardino, and San Diego Counties and surrounded by the Pacific Ocean, Los Padres
National Forest, Angeles National Forest, San Bernardino National Forest and Cleveland National Forest.
The wildfires occurred within the urban-interface of these forested areas and smoke drifted toward
the Pacific Ocean between October 23rd and 29th, 2003 (see Fig. 1). We  also included the area 15 miles
around the city of Victorville, as this area also experienced substantial smoke exposure. Satellite images
confirm that most of these areas were covered by wildfire smoke. However, since the degree of smoke
exposure at ground level cannot be ascertained from satellite images, our definition of smoke-affected
areas may  be subject to error.

To examine the association between wildfire-smoke exposure at the ground level and mortality
levels more accurately, we also created study areas. We  define a study area as the area around each
of the daily particulate matter (PM) monitoring stations. Daily PM monitoring stations record ground
level PM and, therefore, provide a more accurate measure of smoke exposure.

Twelve monitoring stations recorded daily PM levels between October and November 2003 in
Los Angeles, Orange, Riverside, San Bernardino and San Diego Counties. We  defined a study area as
approximately 15 miles around each monitoring station to assure homogeneity of exposure to the
recorded PM levels.6 We  used Geographic Information System (GIS) to obtain the list of zip codes
included in each study area, and we aggregated the zip code mortality data into the study areas.7 We
focused our analysis on the five study areas that showed relatively large numbers of cardiorespiratory
deaths and recorded high PM levels during the wildfire period. Fig. 2 shows the location of the five
study areas: Los Angeles, North Long Beach, Azusa, Anaheim and San Diego. As shown in Fig. 2, the
Anaheim, North Long Beach, Los Angeles and Azusa study areas overlap. To avoid double counting we
created three “new” study areas that removed all overlapping areas. The new-North Long Beach (NLB)
study area removed the overlapping area with the Anaheim study area. The new-Los Angeles study

5 Any analyses, interpretations or conclusions should be attributed to the authors and not to the California Department of
Health Services, Center for Health Statistics.

6 We  compared the daily PM levels of each air monitoring station with the PM levels recorded in all monitoring stations
within 20 miles during the wildfire event. Overall, if two  monitoring stations are located 15 miles or more from each other,
there  were noticeable differences in recorded PM levels between two monitoring stations. When the distance is less than or
equal  to 5 miles, the PM levels of two stations tended to coincide. Between 6 and 15 miles distance, the two  PM measures
matched well, with few exceptions. Generally it seems reasonable to assume that an area of 15 miles around each daily PM
monitoring station was homogeneous with respect to the PM levels.

7 Specifically, first we  mapped air monitoring stations and zipcode areas in different layers on GIS. We buffered each
monitoring station by 15 miles, and we  overlayed the buffer layer and zipcode area layer. If the center of zipcode poly-
gon  lay within the buffer, then we included this zipcode area in that study area. The zipcode area layer is obtained from
http://www.census.gov/geo/www/cob/z52000.html#shp.  We  thank Pam Froemke at U.S. Forest Service, Rocky Mountain
Research Station for her assistance with the GIS.

http://www.census.gov/geo/www/cob/z52000.html
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Fig. 1. Satellite image of southern California on October 26, 2003.
Source:  NASA’s Earth Observatory, http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=12373.

area removed the overlapping area with the Anaheim and North Long Beach area. And the new-Azusa
study area was created by removing the overlapping areas with the Anaheim, North Long Beach and
Los Angeles study areas.

Mortality impact analysis results

Air-pollution levels during the wildfire

Fig. 3 shows the daily average PM2.5 level between October 10th and November 10th 2003 in the five
study areas. PM2.5 levels started to increase on October 24th and exceeded the national daily average
standard of 35 �g/m3 for 5 or 6 days.8 Wind direction shifted on October 29th, and, by October 30th,
PM2.5 levels had returned to normal across these areas. Among the five study areas, the San Diego
study area experienced the worst air quality during the wildfire. The PM2.5 level reached 104 �g/m3

on October 26th and further increased to 170 �g/m3 on October 27th. Although the monitoring data
are missing, it is likely that city of San Diego experienced a high PM2.5 level on October 28th, as satellite
images show heavy smoke covering the city on that day.

The North Long Beach and Anaheim study areas also experienced severe air pollution. The PM2.5
levels were over 90 �g/m3 for three days in North Long Beach and reached over 70 �g/m3 for at
least two days in Anaheim. Los Angeles and Azusa study areas experienced less severe air pollution
compared to the other study areas. Although not shown in Fig. 3, the city of Victorville in San Bernardino
County also had intense air pollution on October 29th and 30th, when daily average PM10 levels
reached to 361 �g/m3 and 227 �g/m3, respectively.

8 This reference to the national standard here is approximate. See footnote 2 for the exact definition of national daily average
PM2.5 standard.

http://earthobservatory.nasa.gov/NaturalHazards/view.php%3Fid=12373
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Fig. 2. Map  of five study area locations. The 15 miles study area is illustrated with circle.

Daily average mortality levels

Table 2 shows the average daily number of cardiorespiratory-related deaths in each smoke-affected
area and study area during the reference, study, and post-wildfire periods in 2003. Table 3 shows the
coefficient estimates of the smoke affected and study areas from the DID models based on Eqs. (1)–(3).
For succinctness, we only report the coefficient of interaction term for each model. Full model results
are reported in the appendix. Based on a goodness-of-fit test using deviance statistics, model (3) for
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Table 2
The daily average number of cardiorespiratory-related deaths.

Reference
period
(10/6–10/19,
2003)

Study period
(10/24–11/6,
2003)

Post-wildfire
period 1
(11/7–11/20,
2003)

Post-wildfire
period 2
(11/21–11/27,
2003)

Smoke affected area by county
Los Angeles (LA) 69.57 72.42 76.57 83.85
Orange (OR) 21.92 22.28 26.14 23.85
San  Bernardino (SBe) 10.71 13.57 12.28 13.71
San  Diego (SD) 23.64 21.35 25.07 25.28
Riverside (RS) 13.28 13.35 13.92 14.42

Study  area
San Diego 12.71 13.42 14.64 13.57
Anaheim 27.57 29.42 35.35 31.57
North  Long Beach (NLB) 31.28 34.71 36.85 35.71
New-NLB (excluding Anaheim) 15.78 16.28 15.92 17.71
Los  Angeles (LA) 41.92 43.28 46.57 50.14
New-LA (excluding Anaheim and NLB) 27.64 27.28 29.07 32.85
Azusa  17.92 18.78 20.21 23.57

Table 3
Estimated interaction coefficients from 36 separate difference in difference models. Dependent variable for all models is daily
number of cardiorepiratory deaths. Standard errors are reported in parenthesis.

Yr2003 × studya Yr2003 × post1a Yr2003 × post2b

Smoke affected area by county
Los Angeles (LA) 0.0147 0.0511 0.0797

(0.0499) (0.0493) (0.0649)
Orange (OR) −0.0197 0.1022 −0.0295

(0.0902) (0.0873) (0.1077)
San  Bernardino (SBe) 0.2530** 0.1175 0.2231

(0.1223) (0.1243) (0.1467)
San Diego (SD) −0.1031 0.0877 0.0519

(0.0885) (0.0858) (0.1042)
Riverside (RS) −0.0663 −0.0205 −0.0785

(0.1157) (0.1147) (0.1378)

Study area
San Diego 0.0289 0.1500 0.0191

(0.1157) (0.1140) (0.1493)
Anaheim 0.0116 0.2103*** −0.0067

(0.0788) (0.0762) (0.0937)
North Long Beach (NLB) 0.0741 0.1249* 0.0203

(0.0733) (0.0724) (0.0880)
New-NLB (excluding Anaheim) 0.0416 −0.0355 0.0531

(0.1048) (0.1050) (0.1248)
Los Angeles (LA) −0.0147 0.0660 0.0741

(0.0642) (0.0633) (0.0751)
New-LA (excluding −0.0636 0.0027 0.0858
Anaheim and NLB) (0.0799) (0.0789) (0.0931)
Azusa −0.0204 0.1005 0.1730

(0.0980) (0.0968) (0.1306)

a Estimated using a Poisson model.
b Estimated using a negative binomial model for Los Angeles smoke affected area, San Diego study area and Azusa study area

sample and estimated using a Poisson model for all other areas.
* Significant at  ̨ = 0.10 level.

** Significant at  ̨ = 0.05 level.
*** Significant at  ̨ = 0.01 level.
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Fig. 3. PM2.5 levels in southern California in October–November 2003.

Los Angeles smoke-affected area, San Diego study area, and Azusa study area are found to violate the
Poisson distribution assumption at the 10% significance level.9 Thus, we re-estimated model (3) for
these areas using a negative binomial regression model. The estimated coefficients shown in Table 3
represent the proportional change in cardiorespiratory-related mortality levels after controlling for
baseline mortality. We  converted the estimated proportional change to the exact percentage changes
by using the following formula: [100 · (exp( ˆ̌ ) − 1)], where ˆ̌

 is the estimated coefficient (Wooldridge,
1999).

After controlling for baseline mortality, we observed significant changes in mortality levels in the
San Bernardino county smoke-affected area during the study period, and the Anaheim and North
Long Beach study areas during the post-wildfire period 1. The San Bernardino county smoke-affected
area showed an increase in daily cardiorespiratory-related mortality level of approximately 25.3%, or
exactly by 100 · (exp(0.2530) − 1) = 28.79% during the study period. Hereafter, we discuss our results
using the exact percentage change. The 95% confidence interval of this estimate is between 1.34% and
63.69%. This increase is statistically significant at the 5% level, and is equivalent to a point estimate of
3.08 excess deaths daily or 43.17 total excess deaths (95% confidence interval of 2.00–95.50 total excess
deaths). Since the periods following the study period did not show a decline in mortality compared
to the reference period, the observed increase in mortality during the study period appears not to be
the result of a harvesting effect.

The Anaheim study area showed a 23.40% increase in cardiorespiratory-related deaths during the
post-wildfire period 1 with a 95% confidence interval of 6.28–43.29%. The point estimate of daily
average number of excess deaths during the post-wildfire period 1 was  6.45 and the total number
of excess deaths was 90.32 (95% confidence interval of 24.24–167.09 total excess deaths). There was
no significant decline in mortality in post-wildfire period 2 compared to the reference period, which
suggests that the observed increase in mortality was not due to a harvesting effect. The North Long
Beach study area showed a significant increase in daily mortality in the post-wildfire period 1 relative

9 We  estimated all models in STATA. A goodness of fit test (estat gof command in STATA) was conducted for each model
and  if the results suggested rejection of the null hypothesis that the Poisson model is appropriate for the data, we estimated a
negative binomial model.
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Table 4
Characteristics of deaths during the reference, study and post-wildfire period in the San Bernardino smoke affected area and
the  Anaheim study area.

San Bernardino smoke affected area Reference
period
(10/6–10/19)

Study period
(10/24–11/6)

Post-wildfire
period 1
(11/7–11/20)

Total number of nonaccidental death 328 362 343

Total number of cardiorespiratory related death 150 190 172
Age > 65 121 150 140
Age ≤ 65 29 40 32

Total number of cardio related death 114 161 135
Total number of respiratory related death 36 29 37

Anaheim study area Reference
period
(10/6–10/19)

Study period
(10/24–11/6)

Post-wildfire
period 1
(11/7–11/20)

Total number of nonaccidental death 760 770 871

Total number of cardiorespiratory related death 386 412 495
Age > 65 319 348 434
Age ≤ 65 67 64 61

Total number of cardio related death 320 334 405
Total number of respiratory related death 66 78 90

to the reference period. However, the increase occurred in the area that overlapped with the Anaheim
study area. When we removed the overlapping area, the increase in mortality was no longer observed.

In summary, we observed a point estimate of 133 excess deaths with a 95% confidence interval
of between 26 and 262 excess deaths in the San Bernardino smoke-affected area and the Anaheim
study area after controlling for the seasonal effect and the natural fluctuation in daily mortality levels.
Table 4 provides more detailed characteristics of the excess deaths in these areas. In the San Bernardino
smoke-affected area there was a significant increase in cardio-related mortality, whereas respiratory
related deaths decreased slightly during the wildfire period. Table 4 also shows the age distribution of
the cardio-respiratory deaths. Excess deaths were observed mainly in the over 65 age group but there
was also an increase in mortality in the less than 65 age group. In the Anaheim study area, both cardio
and respiratory related deaths increased in post-wildfire period 1 relative to the reference period. All
of the excess deaths were in the over 65 age group.

Economic cost associated with the excess deaths from the wildfire-smoke exposures

The standard economic approach used to estimate the cost of premature death is the value of a
statistical life (VSL). The VSL is a measure of societal willingness to pay to save one anonymous person’s
life. The total economic cost of premature mortality is obtained by simply multiplying the number of
premature deaths attributable to an event by the VSL. The VSL has been estimated through survey and
labor market studies where the relationship between additional wage and additional occupational
fatal risk are analyzed (Kochi et al., 2006). Previous studies have shown an extensive range of VSL
estimates depending on the study design. In our analysis, we  use a range of $1.3–13 million (2008 U.S.
dollars). This is the approach used by the U.S. EPA to evaluate the benefits of improved air quality (U.S.
EPA, 2005). Using the point estimate of 133 excess deaths, we calculate the mortality cost of the 2003
southern California wildfires to be between $172.9 million and $1.729 billion with a mean estimate of
$950.95 million.10

10 There has been a discussion that the VSL should be adjusted for the age of the group of people who  benefit from the policy.
The  central issue in this discussion is what the correct VSL for the elderly population group who  would be benefited by the
air  pollution policy the most should be. Since elderly people have fewer remaining years of life than other age groups, they
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Conclusions and policy implications

We  estimated the mortality impact and economic cost associated with smoke exposure from the
wildfires that occurred in southern California in late October 2003. This series of wildfires were some
of the largest ever to burn near a major U.S. urban area. The 2003 southern California wildfires burned
750,043 acres, destroyed 3710 homes, and cost $123 million to suppress. We  estimated that an addi-
tional 133 people died of cardiorespiratory illness due to wildfire-smoke exposure. Using the VSL
employed by the U.S. EPA (2005),  the total social cost of these fatalities was  between $172.9 million
and $1.729 billion.

Excess deaths were predominantly among the elderly. We  also observed a threshold effect:
excess deaths were concentrated in areas with a large exposed population such as Orange and Los
Angeles Counties and areas with extremely high air-pollution levels such as the San Bernardino
County smoke-affected area (daily PM10 level of over 360 �g/m3 and daily PM2.5 level of over
100 �g/m3 in some areas). We  did not find significant mortality impacts in less densely popu-
lated areas with similar air-pollution levels or in densely populated areas with milder air-pollution
levels.

Our results are consistent with Vedal and Dutton (2006), which did not find a significant mortality
impact from the Hayman fire that affected a relatively small population (baseline daily cardiorespi-
ratory mortality of approximately 20) and caused much milder increases in daily PM2.5 levels (up to
48 �g/m3). In addition, this threshold effect is consistent with Sastry (2002),  which found that the
mortality impact from wildfire-smoke exposure was only consistently observed in areas with very
high PM levels (PM10 level of above 210 �g/m3).

We  observed heterogeneity in the timing and cause of mortality (cardio or respiratory). For
example, in San Bernardino mortality was relatively immediate and cardio related. In contrast, in
Anaheim, mortality was delayed and consisted of both cardio and respiratory deaths. This hetero-
geneity may  be attributed to a number of factors, such as different averting behavior and different
demographic characteristics among residents including age, income levels, background health risk
and access to medical care. More detailed analysis of this heterogeneous health effect would be
useful.

To our knowledge, this is the first study to estimate the mortality impact and associated economic
cost of smoke exposure during the 2003 southern California wildfire event. Several studies identified
significant morbidity impacts from the 2003 southern California wildfire events such as the increased
hospital admission levels (Delfino et al., 2009), emergency department visits levels (Viswanathan
et al., 2006; Kene et al., 2008), and adverse health conditions among children (Künzli et al., 2006)
suggesting that this mortality study does not capture the full health cost of the 2003 southern California
wildfires.

Global climate change is expected to increase the frequency and severity of wildfire events.
Areas like southern California may  be particularly susceptible to such effects. In fact, southern
California has experienced intense fires in 2007 and 2008. Prevention of large wildfires is costly
and at times ineffective. However, costly fuel treatments may  be justified, if they are found to
significantly reduce the health effects associated with wildfire-smoke exposure. Likewise, evacu-
ation of susceptible populations during large wildfire events may  also be justified if such actions
can reduce health and mortality effects associated with smoke exposure. The bottom line is
that full accounting of the social cost of wildfire events should include morbidity and mortality
costs.

may  be willing to pay less to reduce the mortality risk than younger people. On the other hand, they may  be willing to pay
more  to reduce mortality risk than younger people because the remaining years of life are a scarce good to them. Krupnick
(2007) extensively reviewed the existing literature on the relationship between age and VSL. Krupnick concludes that there is
no  conclusive evidence to discount VSL for an elderly population. Thus we  apply the uniform VSL to all age groups.
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Appendix A.

Daily number of cardiorespiratory-related death in Anaheim area.
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Model 1.a

LA affected area OR affected area SBe affected area SD affected area RS affected area

yr2003 −0.0672* 0.0416 −0.1044 −0.0290 0.0231
(0.0356) (0.0641) (0.0904) (0.0613) (0.0822)

study  0.0256 0.0359 -0.0167 0.0015 0.0716
(0.0218) (0.0408) (0.0550) (0.0383) (0.0515)

yr2003*study  0.0147 -0.0197 0.2530** -0.1031 -0.0663
(0.0499) (0.0902) (0.1223) (0.0885) (0.1157)

Constant  4.3096*** 3.0462*** 2.4759*** 3.1921*** 2.5636***
(0.0155) (0.0291) (0.0387) (0.0271) (0.0371)

Pseudo  R2 0.007 0.001 0.006 0.005 0.002
N  140 140 140 140 140

Prob(GOF  − Chi2) 0.3725 0.5023 0.6113 0.1436 0.6748

San Diego
study area

Anaheim
study area

NLB study
area

New NLB
study area

LA study
area

New LA
study area

Azusa study
area

yr2003 −0.1215 −0.0579 −0.0879* −0.0887 −0.0868* −0.0571 −0.0609
(0.0828)  (0.0566) (0.0530) (0.0746) (0.0458) (0.0565) (0.0702)

study 0.0258  0.0536 0.0299 −0.0104 0.0465* 0.0506 0.0671
(0.0496)  (0.0345) (0.0321) (0.0456) (0.0276) (0.0345) (0.0426)

yr2003  × study 0.0289 0.0116 0.0741 0.0416 −0.0147 −0.0636 −0.0204
(0.1157)  (0.0788) (0.0733) (0.1048) (0.0642) (0.0799) (0.0980)

Constant  2.6642*** 3.3747*** 3.5311*** 2.8478*** 3.8228*** 3.3765*** 2.9473***
(0.0353)  (0.0247) (0.0229) (0.0322) (0.0198) (0.0247) (0.0306)

Pseudo  R2 0.005 0.005 0.005 0.002 0.012 0.008 0.006
N  140 140 140 140 140 140 140

Prob(GOF  − Chi2) 0.1682 0.1749 0.6786 0.8212 0.3186 0.8588 0.4503

a All models are estimated through a Poisson regression model.
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Model 2.a

LA affected area OR affected area SBe affected area SD affected area RS affected area

yr03 −0.0672* 0.0416 −0.1044 −0.0290 0.0231
(0.0356) (0.0641) (0.0904) (0.0613) (0.0822)

Post1  0.0448** 0.0736* 0.0193 −0.0290 0.0678
(0.0217) (0.0405) (0.0545) (0.0386) (0.0516)

yr2003  × post1 0.0511 0.1022 0.1175 0.0877 −0.0205
(0.0493) (0.0873) (0.1243) (0.0858) (0.1147)

Constant 4.3096*** 3.0462*** 2.4759*** 3.1921*** 2.5636***
(0.0155) (0.0291) (0.0387) (0.0271) (0.0371)

Pseudo R2 0.011 0.015 0.002 0.001 0.002
N  140 140 140 140 140

Prob(GOF  − Chi2) 0.4015 0.5208 0.7910 0.9446 0.5536

San Diego
study area

Anaheim
study area

NLB study
area

New NLB
study area

LA study
area

New LA
study area

Azusa
study area

yr03 −0.1215 −0.0579 −0.0879* −0.0887 −0.0868* −0.0571 −0.0609
(0.0828) (0.0566) (0.0530) (0.0746) (0.0458) (0.0565) (0.0702)

Post1  −0.0087 0.0384 0.0390 0.0445 0.0391 0.0477 0.0195
(0.0500) (0.0346) (0.0320) (0.0450) (0.0277) (0.0345) (0.0431)

yr2003  × post1 0.1500 0.2103*** 0.1249* −0.0355 0.0660 0.0027 0.1005
(0.1140)  (0.0762) (0.0724) (0.1050) (0.0633) (0.0789) (0.0968)

Constant 2.6642*** 3.3747*** 3.5311*** 2.8478*** 3.8228*** 3.3765*** 2.9473***
(0.0353) (0.0247) (0.0229) (0.0322) (0.0198) (0.0247) (0.0306)

Pseudo  R2 0.003 0.018 0.009 0.006 0.008 0.005 0.002
N  140 140 140 140 140 140 140

Prob(GOF  − Chi2) 0.8821 0.2178 0.5419 0.6159 0.1620 0.7311 0.1234

a All models are estimated through a Poisson regression model.
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Model 3.

LA affected area OR affected area SBe affected area SD affected area RS affected area

Poisson Negative binominal Poisson Poisson Poisson Poisson

yr03 −0.0672* −0.0672* 0.0416 −0.1043 −0.0290 0.0231
(0.0356) (0.0392) (0.0641) (0.0904) (0.0613) (0.0822)

Post2  0.1071*** 0.1071*** 0.1138** 0.0237 0.0153 0.1610***
(0.0259) (0.0289) (0.0486) (0.0666) (0.0467) (0.0610)

yr2003 × post2 0.0797 0.0797 −0.0295 0.2231 0.0519 −0.0785
(0.0583) (0.0649) (0.1077) (0.1467) (0.1042) (0.1378)

Constant 4.3096*** 4.3096*** 3.0462*** 2.4759*** 3.1921*** 2.5636***
(0.0155) (0.0171) (0.0291) (0.0387) (0.0271) (0.0371)

Pseudo R2 0.038 0.028 0.01 0.006 0.001 0.012
N  105 105 105 105 105 105

Prob(GOF  − Chi2) 0.0389 0.1560 0.5239 0.2253 0.5357

San  Diego study area Anaheim
study area

NLB study area New NLB
study area

LA study
area

New LA
study area

Azusa study area

Poisson Negative binominal Poisson Poisson Poisson Poisson Poisson Poisson Negative
binominal

yr03 −0.1215 −0.1215 −0.0579 −0.0879* −0.0887 −0.0868* −0.0571 −0.0609 −0.0609
(0.0828) (0.0878) (0.0566) (0.0530) (0.0746) (0.0458) (0.0565) (0.0702) (0.0799)

Post2  0.0462 0.0462 0.1422*** 0.1121*** 0.0622 0.1048*** 0.0870** 0.1007** 0.1007*
(0.0602) (0.0642) (0.0409) (0.0382) (0.0546) (0.0331) (0.0416) (0.0513) (0.0592)

yr2003  × post2 0.0191 0.0191 −0.0067 0.0203 0.0531 0.0741 0.0858 0.1730 0.1730
(0.1406) (0.1493) (0.0937) (0.0880) (0.1248) (0.0751) (0.0931) (0.1126) (0.1306)

Constant 2.6642*** 2.6642*** 3.3747*** 3.5311*** 2.8478*** 3.8228*** 3.3765*** 2.9473*** 2.9473***
(0.0353) (0.0376) (0.0247) (0.0229) (0.0322) (0.0198) (0.0247) (0.0306) (0.0351)

Pseudo  R2 0.0065 0.0057 0.0245 0.022 0.006 0.027 0.013 0.017 0.012
N  105 105 105 105 105 105 105 105 105

Prob(GOF  − Chi2) 0.0701 0.5129 0.6271 0.8535 0.2380 0.3074 0.0051

Full

DID  estimation results. Standard errors in parentheses; *significant at ˛ = 0.10 level; **significant at ˛ = 0.05 level; ***significant at ˛ = 0.01 level. Prob(GOF − Chi2) is the probability of
observing  given results when the assumption of Poisson distributed data is true. If Prob(GOF − Chi2) is less than 0.1, the Poisson regression model is not appropriate and the negative
binominal model should be used.
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